Minimum variance portfolio: the art of constraints

May, 16, 2013
Minimum variance portfolio: the art of constraints

Ksenya Rulik

May, 16, 2013

Abstract

Minimum variance portfolio is an attractive theoretical opportunity to have equity-like return with less market risk. However in practice such portfolios have complex design as minimum variance engine needs portfolio constraints to put the concept at work. Investors face today a broad offer of minimum variance methodologies, so how can one compare the different implementations and evaluate what constraints are really needed in minimum variance portfolio? We show in this paper how to read the constraint map and ensure that the necessary is made to make minimum variance engine work. We also list extra constraints that one encounters in existing minimum variance methodologies and discuss how they impact the ability of the strategy to reduce volatility and improve diversification.
Minimum variance portfolio: the art of constraints
Introduction

In the aftermath of the global financial crisis, efficient use of risk budgets became a priority for many investors. Minimum variance investing, that attracted a great deal of attention in this regard, allows achieving risk reduction via selecting stocks with high diversification potential: low volatility and/or low correlations to other stocks. Minimum variance uses the principle of portfolio optimization introduced by Harry Markowitz and is a fully invested portfolio with minimal possible volatility. However, the sound theoretical principles behind minimum variance approach are not enough to build a real-life minimum variance portfolio. Optimization procedure is sensitive to estimation errors in stock volatilities and correlations. Numerous solutions to the problem exist, including cleaning of covariance matrix with advanced statistical methods and portfolio resampling techniques. But the most widely used solution was and remains the use of portfolio constraints that allow redressing the biases in the optimized portfolio. Hence, minimum variance, as any other optimized portfolio, can benefit from a wisely devised constraint set. But what constraints should be implemented? It happens that different providers of minimum variance solutions have no consensus on the subject: existing minimum variance methodologies have different design, and as a result quite a few differences in the risk and performance of the respective minimum variance portfolios. This article provides an overview of the minimum variance investing approach that is a part of a wider trend called alternative beta. We attempt to give investors tools to interpret the constraints in the context of minimum variance portfolio and compare different minimum variance methodologies.

Alternative beta story

Why should investors be interested in strategies like minimum variance? Passive investment industry is currently dominated by market-capitalization weighted portfolios, called simply market portfolios or traditional benchmarks. Their popularity amongst investors is to a great extent due to the status of efficient portfolio that the market allocation has in the Capital Asset Pricing Model (CAPM), the classical financial pricing theory developed in 1960s. Today investment industry remains faithful to the market portfolio paradigm notwithstanding the important advances in financial theory since the CAPM. One of the crucial findings of academic research since 1970s is the empirical inefficiency of market portfolio. From a theoretical standpoint, the attack on the CAPM came first through unrealistic nature of some of its assumptions. Real markets can hardly be approximated by a homogeneous group of investors with similar views and no investor-specific constraints, and an entire field of behavioral finance developed around irrationality and biases of market participants. Another weak point of CAPM turned out to be the replication of the true market portfolio. Indeed, CAPM advocates efficiency of a global market portfolio, aggregating all the possible risky holdings investors can have. In reality, investors can access only market proxies, often in the form of narrow regional indices. Finally, important pricing anomalies were discovered in the 1990s, following the work of Fama and French (1992). It is widely admitted nowadays that risk factors other than the market affect stock returns: value, size, momentum, and later on, volatility. Following these theoretical advances, a family of new approaches to efficient passive investing was developed, known under the name of alternative beta. Alternative beta portfolios address inefficiencies of mar-
ket capitalization-weighted benchmarks: the strategies employ systematic rules in portfolio construction aiming at adding to the broad market beta an extra (risk-adjusted) benefit. It is common to distinguish several subgroups within the alternative beta family: risk-based approaches incorporating risk management objectives in portfolio construction (such as minimum variance and risk parity), fundamental-based strategies built upon return forecasts based on micro or macroeconomic data (such as Fundamental index and weighting by GDP), and diversification-based approaches that ignore completely return as well as risk forecasts and concentrate on smoothing the distribution of portfolio weights (such as equal weight approach). Alternative beta strategies and minimum variance in particular, are meant to be broad portfolios and are not dedicated to a narrow investment theme or a specific sector. This distinguishes them from style portfolios, like value and size, as well as from narrow sector benchmarks. While the concepts behind the alternative beta strategies are widely discussed, the constraints that play an important role in definition of the alternative beta portfolios are often left out. However it is due to constraints that the strategies can be implemented in a systematic way, remain diversified notwithstanding unfavorable market conditions and mitigate risks that are not controlled by the investment model, such as liquidity risk and estimation risk. Without the constraints one is forced to introduce discretionary human oversight, and thus foregos a great deal of transparency and investment discipline that is a clear advantage of passive investing.

Minimum variance portfolio: the basic setup

Technically, to construct a minimum-variance portfolio one needs a forecast of covariance matrix and an optimization engine. The latter is a mathematical procedure that decides which stocks to pick and what weights to give them to obtain the lowest possible volatility of the overall portfolio. As the smallest possible risk is an exact zero, one needs also a constraint that forces the allocation to be non-empty, such as the budget constraint forcing the sum of weights to be equal to one. Further on, to have a broad investment benchmark one would like to avoid having negative weights in the minimum variance allocation. This motivates the second necessary constraint: no short sales.

Diversification constraints

The basic configuration: a covariance matrix, an optimizer and the two constraints above, give an essential minimum variance portfolio. This is not enough however for an investment benchmark for two reasons. First, common sense as well as the financial regulating authorities suggest that a financial index should satisfy a set of diversification criteria. A basic minimum variance portfolio has no control over diversification and is too concentrated to be an eligible investment benchmark. Moreover, an extreme concentration in minimum variance allocation is often a consequence of underestimation of expected covariance, so some stocks seem too attractive to the minimum variance algorithm. Here diversification constraints bring additional benefit of reducing misallocations due to the estimation noise. There exist two main types of diversification constraints: limiting maximal weight per stock or targeting diversification in terms
of effective number of assets, that is the ex-
act number of assets required to construct an
equally-weighted portfolio with the same con-
centration\(^1\). The constraints in effective num-
ber of assets (that are quadratic in portfolio
weights), have several advantages with respect
to the maximal weight limits (that are linear
in weights). In particular, the former allow
constructing more diversified portfolios for a
given level of maximal weight, as well as pre-
serving the information on the relative riski-
ness of stocks that is usually erased by con-
servatively low weight limits. Here we give an
illustration of the diversification achieved by
both methods. On Figure 1 we show the level
of diversification of minimum variance portfo-
lios constructed using the two different types
diversification constraints.

![Figure 1: Maximal weight limit versus target-
ing effective number of assets. Source: Datas-
tream](image)

The portfolios on the blue line were op-
timized using the linear constraint with the
maximal weight threshold gradually shifte d
from 1\% to 15\%. The portfolios on the red
line were constructed via optimization with
the quadratic diversification constraint target-
ing effective number of assets ranging from 10
to 100. For any given level of maximal weight
the red portfolios are more diversified than the
blue ones. For example, if one targets the max-
imal weight of 5\%, the hard limit of 5\% will
result in a portfolio of 20 effective assets, while
the same maximal weight is respected by a red
portfolio that is two times more diversified.

Liquidity Risk

The second reason why one needs more so-
plicated minimum variance portfolio con-
struction than the basic setup is the control
over invisible liquidity risk. This risk is not
measured by stocks volatility, and thus the
optimized portfolio might allocate large posi-
tions to rather illiquid stocks. This can be ad-
ressed by adding explicit constraints in terms
of stocks absolute or relative liquidity. For ex-
ample, one can set a threshold of minimum
average daily volume that future constituents
of minimum variance portfolio should exhibit.
Relative thresholds however work better (e.g.
selecting N most liquid stocks from the un-
derlying universe), as this keeps portfolio con-
struction free from predefined levels expressed
in currency units and suits to a portfolio of
arbitrary size. The liquidity screening is bet-
ter being done before the launch of the opti-
mization process, and not by fine-tuning the
optimal allocation eliminating illiquid stocks.
The reason is simple: posterior adjustment of
minimum variance composition makes it sub-
optimal, and there will be always another port-
folio with the same level of liquidity that will
give smaller volatility than the one of the read-
justed portfolio. As an alternative to liquid-
ity screening, some providers impose limits
on portfolio turnover. However this addresses
only partially the liquidity risk. Turnover con-
straint helps to reduce the risk of treating too
big orders in illiquid stocks at once; however
it does not prevent the strategy from gradually accumulating important positions in these stocks. This constraint also introduces a path dependency, so that optimization today depends on the portfolio composition yesterday and further back into the past.

Summary of necessary constraints

An investor willing to allocate to minimum variance and get market beta return with reduced market risk, would be interested in the following necessary set of conditions to get a robust portfolio:

- full investment, or budget constraint
- no short sales
- diversification constraint
- liquidity constraint

Minimum variance portfolio with necessary constraints will be somewhat more volatile than an equivalent portfolio with, for example, only a budget constraint. Each additional constraint forces the solution to depart from the true volatility minimum, at least ex-ante. However, this volatility increase is a price one pays for a robust and controlled investment process that can be implemented in a systematic way and result in a diversified and investable minimum variance benchmark.

Minimum variance portfolio: extra constraints

Once the necessary setup is respected, one can add few other constraints to pursue additional investment objectives. Two words of caution here: first, any additional constraint raises the portfolio ex-post volatility, as it drives the allocation further away from the true volatility minimum; secondly, it is worth checking if extra constraints are not in conflict with one of the necessary constraints imposed, or with the main objective of the optimization: volatility reduction.

Sector and country constraints

The most common extra constraint is limiting sector and/or country exposure. This constraint actually can be considered as one of the necessary ones if implemented in an objective way. Limiting important factor exposures allows the portfolio being more representative of the broad market beta and limits the risk of becoming a single-sector bet. However, this risk is limited if the thresholds for sector or country exposures are not variables out of the strategy control. An example is limiting sector allocations to be within a certain range around the current sector exposure of the market capitalization-weighted portfolio. In this case there is no guarantee that exposure to a single sector will not peak following a market bubble.

Individual security capping relative to its market capitalization

This type of constraints is used in the first place to approach minimum variance portfolio to the market capitalization benchmark. A clear secondary objective here is to reduce the tracking error of minimum variance portfolio vis-à-vis the market portfolio. An example of this constraint is limiting a stock weight to be not more than twice of its weight in the market cap portfolio. Indirectly this constraint also aligns the sector and country exposures of minimum variance portfolio to that of the market portfolio, and addresses to some extent liq-
Impact of constraints on portfolio volatility

To estimate the impact of the extra constraints on volatility of the minimum variance portfolio, we selected four commercially available minimum variance indices that are constructed from European stocks and based on different constraint sets. The indices are:

- STOXX Minimum Variance Unconstrained and Constrained Indices (SAXPUNP and SAXPMVP)
- iSTOXX Europe Minimum Variance Index (ISEMVP)
- MSCI Europe Minimum Volatility Index (MXEUMVOL)

The Unconstrained minimum variance index of STOXX (SAXPUNP) has the simplest construction and can be viewed as a proxy of the necessary constrained setup without explicit liquidity constraint. The index includes budget, no short sales and diversification constraints, along with a limit on rebalancing turnover of 5%. The next in terms of constraint complexity is the iSTOXX Europe Minimum Variance index (ISEMVP) that includes necessary constraints with a relative liquidity filter, as well as one extra constraint: limiting the weight of each sector to a maximum of 20% of the portfolio. Further on, the STOXX Europe 600 Minimum Variance Constrained index (SAXPMVP) adds sector, country and factor constraints relative to the STOXX Europe 600 market capitalization-weighted index. And finally, the most complex of the four, the MSCI Europe Minimum Variance index (MXEUMVOL) adds an additional constraint on individual security capping vis-à-vis its market cap counterpart.

Using the backtests of the four indices from July 2002 to February 2013, we estimate their volatilities during the period. All the four indices achieved significant volatility reduction with respect to the European market portfolio (the STOXX Europe 600 Index), as shown on Figure.

![Volatility reduction](image)

Figure 2: Impact of constraints on volatility of minimum variance indices. Source: Bloomberg, calculation by Ossiam

As one expects, the larger is the set of constraints, the smaller is the volatility reduction achieved by minimum variance portfolios. The less constrained SAXPUNP index has volatility two times smaller than the market index, while MXEUMVOL, the most constrained one, achieves only 25% volatility reduction during the period. In terms of absolute volatility, we summarize on Figure the impact of a growing pile of constraints by plotting the cumulative volatility differences among the indices. SAXPUNP, that is our proxy of the setup with necessary constraints, has annualized volatility of 10.48%. The addition of absolute sector constraint raises the volatility of ISEMVP to 12.64%. Adding further sector, country and factor constraints relative to the market portfolio brings the volatility up to 14.04%.
for SAXPMVP. And, finally MXEUMVOL has the highest volatility of 15.18% due to extra relative constraints on individual security weights.

Figure 3: Cumulative impact of constraints on volatility of minimum variance indices. Source: Bloomberg, calculation by Ossiam

Conclusion

Because of the challenges in implementing the minimum variance approach the methodologies differ significantly from one provider to another. Minimum variance portfolios can be very basic, including only full-investment and perhaps long-only constraints: one encounters such "plain-vanilla" minimum variance portfolios in academic research papers. Too simplistic implementation suffers from highly concentrated portfolios and has no control over portfolio liquidity that is unacceptable for an investment benchmark. On the other hand, a heavy set of constraints, especially those binding the portfolio weights to resemble the market capitalizations, might conflict with the very objective of portfolio variance minimization. We showed in this paper that there is a necessary set of constraints; otherwise the minimum variance portfolio is empty or dangerously concentrated and illiquid. Adding constraints beyond the necessary set helps to define extra investment objectives but should be carefully balanced to avoid the conflict with respect to the primary objective of volatility reduction. Next time you face a new minimum variance methodology: check if the necessary constraints are incorporated, then question the role the extra constraints involved.

Notes

1 This constrained is called also Herfindahl constraint, the name that refers to the Herfindahl-Hirschman index used by antimonopoly regulators to measure concentration inside industrial sectors.
2 Disclaimer: Ossiam licenses the iSTOXX Europe Minimum Variance Index for the use in exchange-traded fund.
3 This description represents an approximate comparison of the four indices, since the constraints are not applied in the same way. No index can be strictly considered as a special case of another index with less or more constraints. For example, only the index iSTOXX uses the explicit liquidity constraint while the other three indices rather use the turnover constraint. Besides, there are differences in the implementation of diversification constraints among the indices that we do not detail here.
About Ossiam

Ossiam is a research-driven French asset management firm (authorized by the Autorité des Marchés Financiers) and specializes in delivering smart beta* solutions. Efficient indexing is at the core of Ossiam’s business model. The firm was founded in response to a post-subprime crisis demand from investors for simplicity, liquidity and transparency. Given the environment, there was a growing need among investors for enhanced beta exposure and risk hedging. Ossiam is focused on the development of innovative investment solutions for investors via a new generation of indices.

*’Smart beta’ refers to systematically managed, non-market-cap-weighted strategies covering any asset class.

This document is of a commercial and not of a regulatory nature.

Ossiam, a subsidiary of Natixis Global Asset Management, is a French asset manager authorized by the Autorité des Marchés Financiers (Agreement No. GP-10000016). Although information contained herein is from sources believed to be reliable, Ossiam makes no representation or warranty regarding the accuracy of any information of which it is not the source. The information presented in this document is based on market data at a given moment and may change from time to time.

This material has been prepared solely for informational purposes only and it is not intended to be and should not be considered as an offer, or a solicitation of an offer, or an invitation or a personal recommendation to buy or sell participating shares in any Ossiam Fund, or any security or financial instrument, or to participate in any investment strategy, directly or indirectly. It is intended for use only by those recipients to whom it is made directly available by Ossiam. Ossiam will not treat recipients of this material as its clients by virtue of their receiving this material.

This material reflects the views and opinions of the individual authors at this date and in no way the official position or advices of any kind of these authors or of Ossiam and thus does not engage the responsibility of Ossiam nor of any of its officers or employees. All performance information set forth herein is based on historical data and, in some cases, hypothetical data, and may reflect certain assumptions with respect to fees, expenses, taxes, capital charges, allocations and other factors that affect the computation of the returns. Past performance is not necessarily a guide to future performance. Any opinions expressed herein are statements of our judgment on this date and are subject to change without notice. Ossiam assume no fiduciary responsibility or liability for any consequences, financial or otherwise, arising from, an investment in any security or financial instrument described herein or in any other security, or from the implementation of any investment strategy.

This information contained herein is not intended for distribution to, or use by, any person or entity in any country or jurisdiction where to do so would be contrary to law or regulation or which would subject Ossiam to any registration requirements in these jurisdictions.

This material may not be distributed, published, or reproduced, in whole or in part.
“The STOXX® Indices and the data composed therein (the “Index Data”) are the intellectual property (including registered trademarks) of STOXX Limited, Zurich, Switzerland (“STOXX”) and/or its licensors (the “STOXX Licensors”). The use of the Index Data requires a license from STOXX. STOXX and the STOXX Licensors do not make any warranties or representations, express or implied with respect to the timeliness, sequency, accuracy, completeness, currentness, merchantability, quality or fitness for any particular purpose of the Index Data. In particular, the inclusion of a company in a STOXX® Index does not in any way reflect an opinion of STOXX or the STOXX Licensors on the merits of that company. STOXX and the STOXX Licensors are not providing investment, tax or other professional advice through the publication of the STOXX® Indices or in connection therewith.” STOXX and its licensors have no relationship to Ossiam, other than the licensing of the iSTOXX® Europe Minimum Variance, STOXX® Europe 600 Equal Weight and EURO STOXX® 50 Equal Weight indices and the related trademarks for use in connection with OSSIAM ETF indexed to the indices (hereafter the Products). STOXX and its Licensors do not:

- Sponsor, endorse, sell or promote the Products.
- Recommend that any person invest in the Products or any other securities.
- Have any responsibility or liability for or make any decisions about the timing, amount or pricing of Products.
- Have any responsibility or liability for the administration, management or marketing of the Products.

Consider the needs of the Products or the owners of the Products in determining, composing or calculating the above mentioned indices or have any obligation to do so.

STOXX and its Licensors will not have any liability in connection with the Products. Specifically, STOXX and its Licensors do not make any warranty, express or implied and disclaim any and all warranty about:

- The results to be obtained by the Products, the owner of the Products or any other person in connection with the use of the above mentioned indices and the data included in the above mentioned indices;
- The accuracy or completeness of the above mentioned indices and its data;
- The merchantability and the fitness for a particular purpose or use of the above mentioned indices and its data;
- STOXX and its Licensors will have no liability for any errors, omissions or interruptions in the above mentioned indices or its data;
- Under no circumstances will STOXX or its Licensors be liable for any lost profits or indirect, punitive, special or consequential damages or losses, even if STOXX or its Licensors knows that they might occur.

The licensing agreement between Ossiam and STOXX is solely for their benefit and not for the benefit of the owners of the Products or any other third parties.

Although Natixis Global Asset Management believes the information provided in this material to be reliable, it does not guarantee the accuracy, adequacy, or completeness of such information.

80, avenue de la Grande Armée
75017 Paris – France
info@ossiam.com
+ 33 1 78 40 56 90